Latent Graphical Model Selection: Efficient Methods for Locally Tree-like Graphs
نویسندگان
چکیده
Graphical model selection refers to the problem of estimating the unknown graph structure given observations at the nodes in the model. We consider a challenging instance of this problem when some of the nodes are latent or hidden. We characterize conditions for tractable graph estimation and develop efficient methods with provable guarantees. We consider the class of Ising models Markov on locally tree-like graphs, which are in the regime of correlation decay. We propose an efficient method for graph estimation, and establish its structural consistency when the number of samples n scales as n = Ω(θ min log p), where θmin is the minimum edge potential, δ is the depth (i.e., distance from a hidden node to the nearest observed nodes), and η is a parameter which depends on the minimum and maximum node and edge potentials in the Ising model. The proposed method is practical to implement and provides flexibility to control the number of latent variables and the cycle lengths in the output graph. We also present necessary conditions for graph estimation by any method and show that our method nearly matches the lower bound on sample requirements.
منابع مشابه
Learning Loopy Graphical Models with Latent Variables: Efficient Methods and Guarantees
The problem of structure estimation in graphical models with latent variables is considered. We characterize conditions for tractable graph estimation and develop efficient methods with provable guarantees. We consider models where the underlying Markov graph is locally tree-like, and the model is in the regime of correlation decay. For the special case of the Ising model, the number of samples...
متن کاملLearning High-Dimensional Mixtures of Graphical Models
We consider unsupervised estimation of mixtures of discrete graphical models, where the class variable corresponding to the mixture components is hidden and each mixture component over the observed variables can have a potentially different Markov graph structure and parameters. We propose a novel approach for estimating the mixture components, and our output is a tree-mixture model which serve...
متن کاملLearning Latent Tree Graphical Models
We study the problem of learning a latent tree graphical model where samples are available only from a subset of variables. We propose two consistent and computationally efficient algorithms for learning minimal latent trees, that is, trees without any redundant hidden nodes. Unlike many existing methods, the observed nodes (or variables) are not constrained to be leaf nodes. Our algorithms can...
متن کاملExtending Expectation Propagation for Graphical Models
Graphical models have been widely used in many applications, ranging from human behavior recognition to wireless signal detection. However, efficient inference and learning techniques for graphical models are needed to handle complex models, such as hybrid Bayesian networks. This thesis proposes extensions of expectation propagation, a powerful generalization of loopy belief propagation, to dev...
متن کاملCovariance selection for nonchordal graphs via chordal embedding
We describe algorithms for maximum likelihood estimation of Gaussian graphical models with conditional independence constraints. This problem is also known as covariance selection, and it can be expressed as an unconstrained convex optimization problem with a closed-form solution if the underlying graph is chordal. The focus of the paper is on iterative algorithms for covariance selection with ...
متن کامل